Optimal Parameter Estimation for MRF Stereo Matching

نویسندگان

  • Riccardo Gherardi
  • Umberto Castellani
  • Andrea Fusiello
  • Vittorio Murino
چکیده

This paper presents an optimisation technique to select automatically a set of control parameters for a Markov Random Field applied to stereo matching. The method is based on the Reactive Tabu Search strategy, and requires to define a suitable fitness function that measures the performance of the MRF stereo algorithm with a given parameters set. This approach have been made possible by the recent availability of ground-truth disparity maps. Experiments with synthetic and real images illustrate the approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stereo Image Compression with Disparity Compensation Using the Mrf Model

In coming years there will be an increasing demand for realistic 3-D display of scenes using such popular approaches as stereo or multi-view images. As the amount of information displayed increases so does the need for digital compression to ensure eecient storage and transmission of the sequences. In this paper, we introduce a new approach to stereo image compression based on the MRF model and...

متن کامل

A Machine Learning Approach to Recovery of Scene Geometry from Images

Recovering the 3D structure of the scene from images yields useful information for tasks such as shape and scene recognition, object detection, or motion planning and object grasping in robotics. In this thesis, we introduce a general machine learning approach called unsupervised CRF learning based on maximizing the conditional likelihood. We describe the application of our machine learning app...

متن کامل

Stereo Matching via Learning Multiple Experts Behaviors

Window-based matching such as normalized cross-correlation (NCC) can reliably estimate depth even when the constant brightness assumption is violated in stereo due to imaging noise or different camera gains. However, fixed window methods tend to have poor performance at depth discontinuities and in low-texture regions. In this paper, we describes a novel learning-based algorithm, for stereo mat...

متن کامل

A method for learning matching errors for stereo computation

This paper describes a novel learning-based approach for improving the performance of stereo computation. It is based on the observation that whether the image matching scores lead to true or erroneous depth values is dependent on the original stereo images and the underlying scene structure. This function is learned from training data and is integrated into a depth estimation algorithm using t...

متن کامل

A Method for Learning Matching Errors in Stereo Computation

This paper describes a novel learning-based approach for improving the performance of stereo computation. It is based on the observation that whether the image matching scores lead to true or erroneous depth values is dependent on the original stereo images and the underlying scene structure. This function is learned from training data and is integrated into a depth estimation algorithm using t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005